Sachant que
\((h)\) est la hauteur issue de \(N\) et
\((m)\) est la médiatrice de \([KL]\)
{"init": {"range": [[-10, 10], [-10, 10]], "scale": [35, 35]}, "line": [[[-10.0, -10.0], [10.0, -10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -9.0], [10.0, -9.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -8.0], [10.0, -8.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -7.0], [10.0, -7.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -6.0], [10.0, -6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -5.0], [10.0, -5.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -4.0], [10.0, -4.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -3.0], [10.0, -3.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -2.0], [10.0, -2.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -1.0], [10.0, -1.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 0.0], [10.0, 0.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 1.0], [10.0, 1.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 2.0], [10.0, 2.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 3.0], [10.0, 3.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 4.0], [10.0, 4.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 5.0], [10.0, 5.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 6.0], [10.0, 6.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 7.0], [10.0, 7.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 8.0], [10.0, 8.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 9.0], [10.0, 9.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, 10.0], [10.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-10.0, -10.0], [-10.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-9.0, -10.0], [-9.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-8.0, -10.0], [-8.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-7.0, -10.0], [-7.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-6.0, -10.0], [-6.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-5.0, -10.0], [-5.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-4.0, -10.0], [-4.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-3.0, -10.0], [-3.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-2.0, -10.0], [-2.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-1.0, -10.0], [-1.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[0.0, -10.0], [0.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[1.0, -10.0], [1.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[2.0, -10.0], [2.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[3.0, -10.0], [3.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[4.0, -10.0], [4.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[5.0, -10.0], [5.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[6.0, -10.0], [6.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[7.0, -10.0], [7.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[8.0, -10.0], [8.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[9.0, -10.0], [9.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[10.0, -10.0], [10.0, 10.0], {"subtype": "segment", "stroke": "#ccc"}], [[-1.1, -2.0], [-0.9, -2.0], {}], [[-1.0, -2.1], [-1.0, -1.9], {}], [[4.9, -2.0], [5.1, -2.0], {}], [[5.0, -2.1], [5.0, -1.9], {}], [[-7.1, 3.0], [-6.9, 3.0], {}], [[-7.0, 2.9], [-7.0, 3.1], {}], [[-1.0, -2.0], [5.0, -2.0], {"subtype": "segment"}], [[-1.0, -2.0], [-7.0, 3.0], {"subtype": "segment"}], [[5.0, -2.0], [-7.0, 3.0], {"subtype": "segment"}], [[2.0, -10.0], [2.0, 9.5], {"subtype": "line"}], [[-7.0, 10.0], [-7.0, -9.5], {"subtype": "line"}]], "label": [[[-1.0, -2.0], "K", "below", {}], [[5.0, -2.0], "L", "right", {}], [[-7.0, 3.0], "N", "above left", {}], [[2.0, 10.0], "(m)", {"subtype": "line"}], [[-7.0, -10.0], "(h)", {"subtype": "line"}]]}
Démontrer que \((h)\) et \((m)\) sont parallèles.
Si plusieurs blocs "On sait que, or, donc" sont nécessaires, il faut
les écrire à la suite les uns des autres et non imbriqués les uns
dans les autres.